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!. Introduction 

The study of deformations of algebraic structures in the sense of Gerstenhaber 
[ 13 ] encouraged Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer [ 3 ] to 
view quantum mechanics as a theory of functions on phase spaces with deformed 
products and Poisson brackets. They suggested “that quantization be understood 
as a deformation of the structure of the algebra of classical observables, rather 
than a radical change in the nature of the observables”, and were able to calculate 
the spectrum of the hydrogen atom in this framework. This suggests also the pos- 
sibility of developing new methods for quantum theories, especially quantum field 
theories. 

Such an approach is not new. Since the PoincarC group is in a sense a defor- 
mation of the group of Galilean transformations, the theory of relativity can be 
viewed as a deformation of nonrelativistic physics. We obtain the nonrelativistic 
case by passing to a certain limit of a deformation parameter (velocity of light). 

The basic mathematical structures of classical mechanics are the algebra 
V= C”(N) of smooth functions on the phase space N under ordinary multipli- 
cation and the Lie structure on V induced by the Poisson bracket defined by the 
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symplectic form. The appropriate deformations of the associative algebra struc- 
ture on I/are called star-products. The first star-product appeared as the inverse 
Weyl transform of the product of operators (Moyal [24] ). It was rediscovered 
by Vey [ 281, who considered also deformations of the Poisson bracket. 

The existence of star-products for symplectic structures was proved by Nero- 
slavsky and Viassov [ 251 for manifolds with a vanishing third De Rham cohom- 
ology group and finally by De Wilde and Lecomte [9] in all generality. The 
method consists of constructing the deformation step by step and requires deep 
tools from differential geometry, since one encounters obstructions in Hoch- 
schild and Chevalley cohomology. Unfortunately, the method is not constructive 
in the sense that we can write the star-product explicitly. On the other hand, one 
wants to consider more general Poisson brackets than those obtained from sym- 
plectic forms. For example, Dirac, in the course of his research on degenerate 
Lagrange systems, suggested that the classical Poisson bracket should be replaced 
by a different bracket, which is now known as the Dirac bracket. It is a particular 
case of what is now called a Poisson structure (cf. ref. [ 22 ] ) or, more generally, 
a Jacobi structure in the sense of Lichnerowicz [ 231 or a local Lie algebra struc- 
ture in the sense of Kirillov [ 18 ] (see also ref. [ 151). These notions are of a 
geometrical nature and their precise definitions make use of the so called Nijen- 
huis-Schouten bracket of antisymmetric contravariant tensors on a manifold. 

The abstract algebraic concept of a Poisson structure first appeared in papers 
by Krasil’shchik and Vinogradov [ 2 1 ] as “canonical algebra” and by Guillemin 
and Sternberg [ 161. It was studied and developed by Braconnier [ 61, Bhaskara 
and Viswanath [ 41 and Krasil’shchik [ 19,201 in the graded algebra version as 
well. Also Atkin and the present author in refs. [ 1,2,14] used this concept for 
proving theorems concerning homomorphisms of Lie algebras associated with a 
symplectic form. 

It is a common trend in differential geometry to algebraize notions and for- 
mulas as much as reasonable in order to work coordinate free. The well-known 
example of such a procedure is to understand vector fields as derivations of the 
algebra C”(N) of smooth functions on a manifold, differential forms as antisym- 
metric C”(N) multilinear mappings, etc. 

The Nijenhuis-Schouten bracket is in this language a particular case of the 
Nijenhuis-Richardson bracket for antisymmetric multilinear mappings over a 
vector space [26] and one can see, comparing the clear algebraic form of the 
Nijenhuis-Richardson bracket with the mysterious form of the Nijenhuis- 
Schouten bracket expressed in local coordinates, how powerful such an algebrai- 
zation can be. It simplifies and clarifies calculations which on the level of local 
coordinates not only may be complicated but also hide the essence of the problem. 

Our aim is therefore to develop a purely algebraic approach to Poisson or Ja- 
cobi structures and star-products. The object under consideration will be an as- 
sociative commutative algebra v/with unit over a field of characteristic zero. We 
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introduce an algebraic notion of linear differential operators on V in the spirit of 
Vinogradov (see, e.g., refs. [2 1,291) and define a Jacobi structure to be a Lie 
algebra structure on Vgiven by a differential operator. 

This approach has many advantages. First, we can take for V not only the al- 
gebra C”(N), but also the algebra of polynomial, real analytic, holomorphic, etc., 
functions. Secondly, we have a proper language for such geometrical structures 
not only on manifolds but also on more general and important spaces such as 
spaces of orbits or leaves of generalized foliations, where the local coordinate 
approach is mostly inappropriate. And finally, we could deal with Poisson struc- 
tures on infinite-dimensional manifolds, which gives the possibility of discover- 
ing new quantization schemes for field theories. 

We start in section 2 with an algebraic formalism developed by De Wilde and 
Lecomte in ref. [ 10 ] concerning a graded Lie algebra structure on the space M( V) 
of multilinear mappings over a vector space V, Hochschild and Chevalley cohom- 
ology, and deformations. Assuming that V is an associate commutative algebra, 
we introduce in section 3 the notion of a linear differential operator on V and 
some additional structures on M( V). 

In section 4 we define a Jacobi algebra. We show that, under some reasonable 
assumptions, the Jacobi structure must be given by a differential operator of or- 
der 1, and we give a precise description of this operator, which can be viewed as 
a generalization of the algebraic part of Kirillov’s results [ 181. We define a star- 
product and prove a formula showing that the universal enveloping algebra of a 
Lie algebra is obtained from a star-product for the canonical Poisson structure on 
the dual to the Lie algebra. ’ 

Section 5 is devoted to a graded Lie algebra structure, cohomology, and star- 
products in the tensor algebra of a universal enveloping algebra, which are com- 
patible with these notions for multidifferential operators. This can be regarded 
as a translation of the problem of existence of star-products to a formal level. 
Using the graded Lie algebra structure we define Poisson elements and point out 
a connection with the classical Yang-Baxter equations and some results of Drin- 
fel’d [ 12 1. 

A theorem there, concerning cohomology, shows what was hidden behind the 
proofs of Vey [ 281 and Cahen, De Wilde and Gutt [ 7 ] concerning the descrip- 
tion of the local Hochschild cohomology of the algebras of smooth functions on 
a manifold. 

We use the results of section 5 in the last section, where we prove the existence 
of star-products of order 3 in general, and star-products of infinite order in a 
special case. In particular, for some Poisson structure we get explicitly defined 
star-products, which can be viewed as generalizations of Moyal products. Note 
that the method works for degenerate Poisson structures as well. We end with 
some examples of Poisson structures and corresponding star-products. It is worth 
noting that, since quantum groups can be understood as deformations of Hopf 
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algebras of functions on topological groups, the associative part of these defor- 
mations can probably be written as a star-product for the Lie-Poisson structure 
on the group which is the infinitesimal part of this deformation (quantum group). 
Therefore the star-product associated to a quantum group will give an interesting 
approach to the noncommutative differential geometry in the spirit of Connes 
[ 81 and, we believe, will open new perspectives to understand quantum group 
structures. We shall discuss these questions elsewhere. 

2. Preliminaries 

In this section we shall mainly use definitions and results of De Wilde and 
Lecomte [ 10 1, which seem to form the proper algebraic setting of the problem. 

Let V be a vector space over a field A of characteristic 0. We denote by Mp( V) 
the space of all (p+ 1 )-linear maps A : VP+‘+ V (p>O), M-‘( V) = V, and we 
set 

M(V)= 0 MP( V) . 
pa-1 

For the graded vector space M( V) define 

i: M( V)LM( V) 

by i(B)A=O ifAEM-‘( V) and 

~(B)A(xcl, *a*, Xa+b) 

=k~ow6ml ,..., Xk-*,B(-G ,..‘, &+b),xk+b+l,**., &+d, 

ifAEM”( V) (~20) andBEMb( V). Define now A : M( V)2+M( V) by 

AAB=i(B)A+ (- l)Ob+’ i(A)& AEM”( V), BEMy V) . 

The “bracket” A in M( V) is an extension of the usual commutator bracket in 
MO(V). 

For the graded subspace d ( V) = @a2 _ , da ( V), where the space da ( V) is the 
space of all antisymmetric elements of M”( V), define a : JX!( V) 2-r& ( V) by 

(a+b-t 1 )! 
/lAB= (a+l)!(b+l)! ct’(AAB), AE&=( V), lkdb( V) , 

where a! stands for the antisymmetrization projector in M( V). 

Proposition 2.1. The pairs (M( V) , A ) and (d ( V), ii ) are graded Lie algebras. 
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Remark 2.2. The “bracket” A was introduced by De Wilde and Lecomte. Its an- 
tisymmetric part d was earlier known as Nijenhuis-Richardson bracket [26]. 
On the other hand, the Nijenhuis-Richardson bracket was introduced as an al- 
gebraic generalization of the Nijenhuis-Schouten bracket for antisymmetric con- 
travariant tensors on a manifold [ 271. 

For a graded Lie algebra (E, 0 ) and AE E define a,,, : E-t E by aA (B) = 
(- 1 )‘AAOB, &Et’. 

Proposition 2.3. Let (E, Cl ) be a graded Lie algebra (M( V), A ) [ (d(M), ii ) 1. 
Then AGE’ defines an associative (Lie) algebra structure on V .$ and only if 
AOA=O. In thiscased, : E-E is homogeneous ofdegree 1 andsatisfies a,oa,=O. 
Hence Cl induces on the cohomology space H( E, Cl ) = ker aJim a, a graded Lie 
algebra structure. 

Remark 2.4. If AEM( V) is such that AAA= 0, we have seen that ( V, A) is an 
associative algebra. The cohomology of a, is the Hochschild cohomology of this 
associative algebra. If AEl’ ( V) such that A&A=O, then ( V, A) is a Lie algebra 
and the cohomology of aA is the Chevalley cohomology of the adjoint represen- 
tation of ( V, A). 

Denote by V, the space of all formal series x, = crZO Ekxk (xke V). An element 
A, of Mp( V,) is formal if it has the form 

A,( (x;“‘, . . . . xiP) 1) = ? &k(r+m+E+, =k4(xio? -m-2 x$‘))) > 
kc0 ... P 

where A+MP( V) for each r>O; A, is called the rth component of A, and we can 
write A, = C yco &‘A,. Thus the set of formal elements of Mp( V,) or JP( V,) iden- 
tifies naturally to Mp ( V) E and dp ( V) E. 

Proposition 2.5. The space M( V), is a graded Lie subalgebra of (M( V,), A ) and 
the space & ( V) E is a graded Lie subalgebra of (d ( V,), & ) . 

Let ( V, A) be an associative or a Lie algebra. A formal deformation A, of A is 
an associative or a Lie algebra structure on V, such that A, is formal and Ao=A. 
Writing Cl for A or a, A, is an‘associative or a Lie algebra structure if and only 
ifA,ClA,=O and this in turn is equivalent to 

C AiOAj=O for k=l, 2, . . . . 
i+j=k 

A formal deformation of order k of ( V, A) is a formal A, such that Ao=A and 
Ci+j=/AiOAj=Oforalll<k. 
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Proposition 2.6. A bilinear formal map A, = C p”= , E’Ai is a formal deformation of 
order k ofA if and only if 2a,.,,Ai = Ji for all i< k, where 

Ji= 1 A,OA,, 
r+s=i 
r.s> 0 

and only if a..ro Jk+ , = 0. 

In order to construct a formal deformation of Ao, a natural approach is to con- 
struct by induction Ak such that Cf==, &‘A; is a formal deformation of order k. To 
pass from step k to step k+ 1, we know that Jk+, is a cocycle for a..,,, and that we 
can extend the deformation to the order k+ 1 by adding ck+‘Ali+, if and only if 
Jk+ I = 2a..w%+ I . Thus the obstruction to extending the deformation from order 
k to order k+ 1 is the cohomology class of Jn-+ ,. 

3. Linear differential operators in commutative algebras 

In his famous paper [ 181 Kirillov considered Lie algebra structures on the space 
C”(N) of smooth functions on a manifold N given by differential operators. We 
had the impression that at least a part of his work is in fact of a purely algebraic 
nature and we succeeded in proving the corresponding generalization, which will 
be presented in the next section. It can be applied to such geometric structures as 
orbit or leaves spaces, for which we usually have no convenient manifold struc- 
ture, but algebras of “smooth functions” can be easily defined. Thus we shall 
make precise in this section what differentiability means from the algebraic point 
of view. These ideas come from the work of Grothendieck and were used with 
great success in a series of papers by Vinogradov and Krasil’shchik (see, e.g., refs. 
[21,291). 

Our object under consideration will be an associative commutative algebra with 
unit ( V, m, 1 ) over a field X of characteristic 0. The standard model is of course 
the algebra C”(N) of smooth functions on a manifold N, but we can also take 
into account algebras of polynomial, real analytic or holomorphic functions, or 
algebras of functions invariant with respect to a group action or functions con- 
stant on leaves of a given foliation. 

We shall usually write “xy” instead of “m (x, y )“. 
The graded vector space M( V) (cf. section 2) possesses the natural associative 

algebra structure “s” defined by 

A-We, .a., xa+t,+ I ) =A(xo, ..a, xa)Bk+ I, . ..> x,+6+1 ) , 

AEM”( I’), BEM~( V). Using the antisymmetrization projector a’, we can define 
the wedge product in &( V) putting 
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(a+b+2)! 
AAB= (a+l)!(b+l)! a(A-B) ’ 

which makes d( V) into a graded commutative (or super) algebra. Define an 
additional coboundary operator d : M” ( V) --V&P’+’ ( V) by 

~(.%I, .-.5 x0+ I )= j. (-1)‘~,A(xo, . . ..x.--l,xi+~, -->~a+,). 

It is a matter of computation to show that d’=O. Since aod=doa, d is also an 
operator on &( V) and, as can be easily seen, it is exactly the coboundary opera- 
tor for the cohomology of the commutative Lie algebra Vwith coefficients in the 
regular representation induced by the multiplication m. 

In M( V) we can distinguish the graded subspace of differential operators as 
follows. In EndA ( V) =M” ( V) we define recurrently the subspace Diff,( V) of lin- 
ear differential operators of order < Y by 

(i) Diff,( V) = (0) if r<O, 
(ii) Diff,( V) = {DEM’( V) : D=H, for some XE v), where H,(y) =xy, 
(iii) Diff,, , ( V) = {DEM’( V) : G(x)DEDiff,( V) for all XE v>, where 6(x)D 

[D,H,] and the bracket [ , ] is the usual commutator [D,, D2] =D,oD2- 
DzoD1. 

Note that Diff,( V) is a commutative subalgebra of M” ( V) and it is exactly the 
space of cocycles with respect to the coboundary operator d : M” ( V) -+M’ ( V). 

Since the operators {6(x) : XE v) commute, we can also write 

Diff,.( V) ={DeMO( V) : 6(xo)o...~6(x,)D=0 for all x0, . . . . X,E v> . 

It is not hard to verify that 

Diff, (V) =Der( V)ODiff,( V) , 

where Der( V) is the Lie algebra of derivations of Vand the splitting is given by 

Diff, ( V)~DH (D-H D(l,)+HD(l,~Der(V)ODiffo(V). 

Hence 

Der(V)={DEDiff,(V) : D(l)=O}, (3.1) 

i.e., derivations are exactly differential operators vanishing on constants. 
It is also clear that the space Diff( V) := UrPO Diff,( V) of all differential oper- 

ators on Vis in a natural way a filtered associative and a filtered Lie algebra, since 

D, oD2 EDiff,,+k( V, LO, D2 1 ~Diff,,+k- I ( V , 
for D, EDiff,, (V), D2cDiffk( V) . (3.2) 

We say that DEDiff( V) is of order r [and we write rank(D)=r], if DEDiff,( V) 
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and D$ Diff,- , ( V). 
The introduced definition coincides with the usual one for V= C” (N). 

Proposition 3.1. Let V be the algebra C”(N) of smooth functions on a manifold 
N. Then DEDiff,( V) if and only if D is a local operator and in every local coordi- 
nate chart ( U, (x,, . . . . x,, ) ) on N we have 

D(f) (x, > . . . . &I)= c Bp(X,,...,X,)DP(f)(X,,...,X,) 3 
IPl=sr 

wherepa are smooth functions on U and DB= alfll /axf’ ... axp for all multiindices 
P= (PI, .--, L-4). 

Remark 3.2. For V= C” (N), one can prove that the algebra Diff ( V) is generated 
by Diff, ( V). This is not true in general. For instance, consider the algebra 
V=lR (x,, x2, . . . ) of polynomials in infinitely many variables. It is easy to see that 

Der(V)= . 

On the other hand, D= 22, a2/ax: EDiffi ( V) and one can easily see that D is 
not a polynomial in variables from Diff, ( V) [cf. (3.1) 1. 

A useful tool to determine differential operators of order r is provided by the 
following proposition. 

Proposition 3.3. An operator DEM’( V) is a differential operator of order <r if 
andonlyif8(x)‘+‘D=Oforallx~V. 

Proof Take x0, . . . . X,E Vand to, . . . . t,d. For x= toxo +-- + t,x, we have 

O=S(x)r+‘(D) 

lr+ l )! = c - io!-- 
t$...t~~~(xo)io...~(x 

i,! #- r )i’(D). 
io+...+ir=r+ 1 

Since X is of characteristic 0, the polynomials t$ -tk are linearly independent and, 
finding a suitable linear combination, we get that 6(x,)-6( xr) (D) = 0. 0 

The multilinear differential operators are defined recurrently in a natural way. 
Namely, DEMP( V) (p>O) is a difirential operator of order <r, if i,(x)D is a 
differential operator of order 6 r for each XE V and n = 0, . . . . p, where 

i,,(x)D(xo, . . . . xp- I ) =D(xO, . . . . x,,-I, x, x~, . . . . xPmI ) . 
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The space of all (p+ 1 )-linear differential operators of order <P will be de- 
noted by Difff ( V), the set of all (p+ 1 )-linear differential operators will be de- 
noted by DiffP( V), and DifP ( V) = eP, _ , DiffP( V). 

The antisymmetric differential operators will be denoted dDiff+Y ( V), etc. For 
OQn~pandx~Vdefine6,(x) : iW’(V)_tkP’(V) by 

&(x)D(xo, . . . . xp)=D(xo, . . . . X~-l,XXn,Xn+I, . . . . xp)-xD(x0, . . ..xp) . 

We say that DEW’( V) is a differential operator of order <r with respect to the nth 
variable, if 6,,(x0)~G$,(x,.)D=0 for all x0, .-.,x,6 V. By proposition 3.3, this is 
equivalent to the fact that S,(X)~+‘D=O for all XE V. 

It is easy to see that DEW’( V) is a differential operator if and only if it is a 
differential operator with respect to all variables and the order of D is the maxi- 
mum order of D with respect to all variables. Note also that 6,(x) and S,(y) 
commute for all 0~ n, k<p and x, YE V and that i,(x) and r&(y) commute for 
n#k. 

Let DerP={DEDiff$’ (V) : i,( 1 )D=O for O<n<p} be the space of all (p+ l)- 
linear derivations [cf. (3.1) 1. Also let Der* ( V) = eP, _ , DerP( V) be the space 
of multiderivations and dDerP ( V) and dDer* ( V) the same for antisymmetric 
multiderivations. Dip ( V) and Der* ( V) [ &DifP( V) and dDer*( v) ] are 
clearly associative subalgebras of (M( V), * ) [ (d(V), A ) 1. One can prove 
moreover that D, &D+&Diff$t-, (V) if DIE.s4Difft (V) and D2EdDiffj:( V), 
which generalizes (3.2). Thus we get the following proposition. 

Proposition 3.4. 
(i) DiP ( V) is a graded Lie subalgebra of the graded Lie algebra (M( V), A ). 

Moreover, DifP( V) is invariant with respect to the coboundary operators a,,, 
and d. 

(ii) dDiP ( V), &Die ( V) and dDer* ( V) are graded Lie subalgebras of the 
graded Lie algebra (& ( V) , ii ) . 

Proof It is quite obvious that i(B)AEDiffz$ V) for AEDiffs( V), 
BoDifft ( V). If A and B are antisymmetric, then 

i(B)A(xo, . . . . ~,+b+~) = 1 ~JM(WJ), XJ=) , 
J 

where J runs over all subsets of (0, . . . . a+ b+ 1) with b+ 1 elements, J* is the 
complement of J, xJ = (XJ, , . . . . xJ,+, ) with J, < .a. < Jb+ i being elements of J and 
o(J) being the sign of the permutation transforming (x0, . . . . x,+~+,) into 
(XJ,~J*). 

In order to show that A Li B is of order < n + k- 1, it suffkes to show that it is 
of order < n+ k- 1 with respect to x0. The antisymmetric multilinear operators 
of order 0 are trivial, so we can assume that n, k> 1. Hence A (B( xJ), xJ+) is of 
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order <n<n+k- 1 ifOEJ*and 

do(z) “+“i(B)A(x,, . . ..x~+~+.) 
=x0x a(l)GO(z)"B(l,x,)GO(z)"A(l,xr*), 

I 

where I runs over all subsets of { I, . . . . a+ b+ I} with b elements. Hence 

sO(z)“+“AiiB(xO, . ..) X,+6+1 ) 

=x0 -q [o(Z)+ (- l)ob+‘o(z*)] 

xs,(z)kB(l,x,)~~(z)"A(l,x~*)=o. 

Finally, I’ (B)A vanishes on constants if A and B do. 0 

Remark 3.5. For V being the algebra C” (N) of smooth functions on a manifold 
iV, dDer* ( V) can be interpreted as the space of all antisymmetric contravariant 
tensors on N. The multiplication & coincides, up to some constant factors, with 
the Nijenhuis-Schouten bracket. 

4. Jacobi and Poisson algebras 

Well-known examples of Lie algebra structures on the spaces C”(N) of smooth 
functions on manifolds are those given by the Poisson bracket on symplectic 
manifolds and by the Lagrange bracket on contact manifolds. Kirillov considered 
in ref. [ 181 all possible Lie algebra structures on C” (IV) given by differential 
operators. He proved that such operators must be of order 1 and he described the 
corresponding structures, which appeared to split into Poisson and Lagrange 
structures given by symplectic and contact forms on leaves of generalized folia- 
tions induced on the manifolds. The algebraic part of his work is covered by re- 
sults we shall prove in the framework developed in section 3. Our methods are 
different, but we hope that they touch the core of the problem. We call the alge- 
braic structure Jacobi algebras after Lichnerowicz, who used the notion of a Ja- 
cobi structure in ref. [23] in a geometrical but, as will be seen, corresponding 
context. 

Definition 4.1. A Jacobi algebra is an associative commutative algebra V with 
unit 1 over a field k of characteristic 0 equipped with a skew-symmetric differ- 
ential operator PE dDiff* ( V) which defines on V a Lie algebra structure. P will 
also be called a Jacobi structure on V. A Jacobi structure will be called a Poisson 
structure on V, if P vanishes on constants, i.e., P( 1, . ) = 0. 



J. Grabowski /Abs,stract Jacobi and Poisson structures. Quantization and star-produds 55 

Theorem 4.2. If P is a Jacobi structure on V and V has no nontrivial nilpotent 
elements, then P is of order < 1. 

Prooj For XE V put PM,=iO(x)P. The Jacobi identity is then equivalent to 
r,-, f$l =PP(s,yb i.e., XHP,, establishes a homomorphism of the Lie algebra ( V, P) 
into the Lie algebra Diff ( V) of differential operators on V. Let n = rank( P). Hence 
P.yE Diff,, ( V) for all XE V. We will show that n = 1. 

Suppose the contrary. Let 

k=max{rank( (6, (z,)4,(z,,)P)(~, 1)) : zI, . . . . z,,E~. 

Since P is of order n with respect to the second variable, k> 0. Similarly to prop- 
osition 3.3 one can prove that k=max{rank( (6, (z)‘P) ( ., 1 ) : ZE v) and that 

there are uo, zoe Vsuch that 60(~o)“6, (zo)“P#O . (4.1) 
Take x, y, ZE V. Since P.,, p,,, [ PS,, <,,I are of order < n and 2n - 12 n + 1 (n > 1)) 
we have 

o=cY(z)2’1-- [P,,, ?,,I 

= 
( > 

‘“,- l ([S(z)1P*,, d(z)“-‘P>,]+ [6(z)“-‘PMy, 6(Z)“P>,]) . 

Hence for each WE V, 

o=s(z)“p,(s(z)“-‘P~,(w))-~(z)“-‘q,,(6(z)”P.,(w)) 

+6(z)“-‘P~,(G(z)“q,,(w))-6(z)“P,(6(z)”-’P~,(w)) . 

Since 6( z)“P,, - - i. (u)S, (z)‘*P is of order 0, we can rewrite the above equality in 
the form 

o=s(s(z)“P~,(1))s(z)“-‘~,(w)+(6(z)”-’P~~(w))(6(z)“P,(1 )) 

-(6(w)6(z)“-‘P~“(1))(6(z)“P~,(1))-w~(z)”-’P~,(6(z)“P~,(1)). 

For fixed w, y, z the right-hand side, @(z, w, y, x), is a linear differential operator 
with respect to x. All terms, except for the last one, are clearly of order Gk, so 
that 

0=(6,(uo)“‘83(Uk)~)(Z, w,Y,x)=-w(~,(~o)~~~~,(~k)~)(z~Y,x) > 
for all uo, . . . . ZQE V, where Y(z,y, x) =6(z)“-‘P,,(S(z)“P-,.( 1 )). It is easily seen 
that 

(&3(u) w (z, Y, x) =~lw”-‘m, ~o(~vl(z)“p(x, 1)) 

+S,(u)S,(z)~-‘P(y, s’(z)‘zP(x, 1 )) . 

Hence, inductively, 
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xp(Y, sO(“O)‘..sO(ai)‘.-s(~k)~~ (Z)“P(X, 1 )) , 

where the hat stands for omission, and further 

.S,(Ui)S,(Z)"-'P(',l)=O (4.2) 

for all uo, . . . . uk, ZE V, since the corresponding operators are of order 0. Putting 
uo=...=uk=zin (4.2), weget 

do(z)ks,(Z)nP(l,l)*~,(Z)"P(~,l)=O. 

Hence (S,(z)%, (z)"P(l, 1 ))*=O and 

s,(z)ks,(Z)"P(l,l)=O, (4.3) 

since V has no nonzero nilpotent elements. Putting inductively in (4.2) 
uo=...=uj=u, uj+,I=.-.=uk =z, we get finally in a similar way that 

so(u)k-‘s,(z)s, (z)“P( 1,l) =o , (4-4) 

so(u)k~,(z)"P(1,1)~6,(u)6,(z)"-'P(~,1)=o. (4.5) 

For &A put z:=z+ tu in (4.4). Similarly to the proof of proposition 3.3, the coef- 
ficients of the polynomial 

vanish. In particular, 

nS,(u)k-'~~(Z)B~(U)8,(Z)n--Ip(l,1) 

+s,(u)ks,(z)"P(l,l)=o. 

Multiplying both sides by So (U ) kS, (z) “P( 1,l ) , we get 

ns,(u)~-'6~(z)S,(u)6,(z)"-'P(1,1)~6,(u)"6,(z)"P(l,l) 

+(6,(u)ks,(Z)np(l,1))2=0. 

Thefirstte~vanishesby(4.5),so6o(u)k~,(z)nP(1,1)=Oforallu,z~V,which 
contradicts (4.1) , since 

~o(~o)k~,(~o)"~(~,y)=xys,(u~)k6,(Z~)n~(l,l). 0 
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Remark 4.3. The assumption concerning nilpotent elements is essential. For in- 
stance, let V be freely generated by {x, y} with the condition x2 = 0. Then 

P(u, v)=x ( a” (u)v- a” (v)u w w > 
defines a Lie algebra structure on Vand P is clearly of order n. 

Let now P be a Jacobi structure on V. We know now that P~.&Diff! ( v). By 
(3.1 >J.r:=9r-&,(l) c Der ( v) for each XE V. Define QE d’ ( V) by 

a(x,Y)=P(x,Y)--xP,(Y)+YP,(x) * 

Q is a bilinear derivation, since sZ(x, . ) = D, -xD, , and we can write P= sZ+ dD, 
where D=D, and d is the coboundary operator defined in section 3. Since P de- 
tines a Lie algebra structure, Pa P= 0, or equivalently 

sZ~Q+2s2~dD+dD~dD=O. (4.6) 

One can easily check that dDAdD=O for DEDer(T/) and that Q,&dD= 
d(Q&D)-D~QforallSZ~Der’(V),DEDer(I’),so (4.6)isequivalentto 

Lk&i++d(SZhD)-2DLkO. (4.7) 

It is easy to see that for AeDer*( v) we have iO( 1 )A=0 and iO( 1 )dA=A, so ap- 
plying iO( 1 ) to (4.7) we get sZ&D=O. Thus (4.7) is equivalent to the system of 
equations 

(i) D&Q=O, 
(ii) J~&ZI=~DASZ. 

Since in the case V= C” (N) and for DEDer( v) the map De? ( v) 
~AH D~AE Der* ( I’) corresponds to the so-called Lie derivative along the vector 
field D (which is usually written as 5$), we get algebraically the same formulas 
as Kirillov in ref. [ 18 ] and Lichnerowicz in ref. [ 23 1. 

We summarize the results in the following theorem. 

Theorem 4.4. Suppose that Vis an associative commutative algebra with unit over 
afield of characteristic 0 containing no nonzero nilpotent elements. Then the fol- 
lowing are equivalent: 

(i) PE &‘Di ff’ ( v) is a Jacobi structure on V. 
(ii) P=Q+dD, where &Der’ ( V), DgDer( V) satisfy, the conditions (a) 

D&52=0, (b) 1;2&= 20 A Q. Moreover, D= 0 if and only ifP is a Poisson structure. 

From now on we will deal with algebras V containing no nonzero nilpotent 
elements and hence, by theorem 4.4, with Poisson structures given by bilinear 
derivations. In this case our algebraic concept agrees with the usual one due to 
Krasil’shchik and Vinogradov [ 2 I ] (they call this object the canonical algebra) 
and Guillemin and Stemberg [ 161. Graded versions of this definition are due to 
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Braconnier [6] and KrasiI’shchik [ 19,201. 
It is easy to see (&Der* ( V), A , a ) is a graded Poisson algebra. We also have 

a Poisson algebra structure on the space of symmetric multiderivations (cf. ref. 
141). 

Let now P be a Poisson structure on an algebra V. Since P is a bilinear deriva- 
tion, it is easy to see that a,,,P= 0, i.e., P is a Hochschild cocycle. Thus m+&P is a 
formal deformation of the multiplication m in Vof order one. We will look for 
special formal deformations of in of higher orders. 

Definition 4.5. A formal deformation A,= m+&P+ C rZ”=z &“Ak is called a star- 
product for P if, for each k> 1, 

(i) &Diff’ ( V), 
(ii)Ak(U,V)=(--I)~~;Ak(V,tl), 
(iii) Ak is vanishing on constants, i.e., i0 ( 1 )&=O. 

The assumption that Ak vanish on constants ensures that 1 remains the unit in 
the associative algebra ( V,, A,). 

A significant example of a Poisson structure generated by no symplectic form 
is the canonical Lie-Poisson structure on the dual 9 of a Lie algebra Y discov- 
ered by Lie. The orbits of the coadjoint action of the corresponding Lie group are 
exactly the symplectic leaves of this structure, which was rediscovered by Berezin 
and, finally, by Kirillov and Souriau. 

Regarding elements from Y as functionals on p, we can write P(x, y ) = [x, y 1, 
where [ , ] is the Lie bracket in 3’. Since any Poisson structure on C” (9) is a 
bilinear derivation, it is completely described by the action on functionals. In 
local coordinates x,, . . . . x,,EY on Z+ we can write 

P= C [Xi,Xj]aiAaj, 
id 

where ai= a/a,,. 
Gutt [ 171 observed that a star-product for P is actually given by the multipli- 

cation in the universal enveloping algebra 9~= 91( 3’) or, in other words, that the 
universal enveloping algebra is in fact a star-product (quantization) of P. 

Drinfel’d used in ref. [ 12 ] a direct formula for this star-product without men- 
tioning it explicitly. Since the formula seems not to be widespread, we would like 
to present a very short proof of it. 

Let xl, . . . . x,,, be a basis of a Lie algebra Y. The symmetric algebra S=S( 3’) 
can then be naturally identified with the algebra of polynomials on Y and thus 
regarded as embedded in C”( 9). On the other hand, S and % are naturally 
isomorphic as vector spaces via the symmetrization mapping. Let us add a free 
formal parameter s putting the Lie bracket in ge to be E [ , 1. We have the multi- 
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plication * on ‘?& which can be understood as an associative structure on S, (cf. 
Dixmier [ 111). 

Theorem 4.6 (Gutt, Drinfel’d ). (S,, * ) is a star-productfor the canonical Poisson 
structure on the dual Y. The multiplication * can be written explicitly in theform 

f*g=fg+ f L 
,,=, n! 

X c Ca,a, “- C cr,,p,,E~(lrvll+Iaf)-~ta27~I(f)a21pi(g) , 
ICtil+lL%lSl 

where, for multiindices (Y;=cY= (a’, . . . . a”‘), pi=fi= (p’, . . . . /3”‘), the functional 
cap as an element from Y is the coefficient in the Campbell-Baker-Hausdorff series, 

CH( C tkXk, I SjXj) = C tkXk + C SjXj+ i& C tkSj[Xk, Xi] 4-e.. 3 

of the term 

tag= ty’ . ..t.,“‘$ . ..$ 

and aa denotes ap’...a:,‘::“. 

Proof. Let x and y be elements of a (e.g. free) Lie algebra 9c with the bracket 
E [ , 1. In the universal enveloping algebra ( qe, * ) we can write 

e IS * e sv = e CH ( L\‘.SY ) 
, 

where CH (tx, sy) = C tLYsPc~p is the Campbell-Baker-Hausdorff series. We have 

,ts * es!‘= c & +px*‘*y*‘J ) 

and since x*‘=xI, y’” = y” are symmetric we can get the symmetric form of x’*y” 
(i.e. on the level of the symmetric algebra S,) just by looking at the coeficient 
t’s” on the right-hand side (which is clearly symmetric). This implies 

x’*y”=l!h! ,,f, f ,a$c, c,,p,...C,,,~,,&‘+“-” . 

~/3kdl 

Since cIo=x and co1 =y, it is easy to check that the right-hand term equals 

Putting C tpk instead of tx and ,I2 S+j instead of sy and passing to multiindices 
we get the desired formula. 0 
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Remark 4.7. In a more transparent form 

f*g=exp[ (CH(a, b)-a-bIleI cf@g> , 

where a= C x,J3&GOid, b= 1 xj@id@aj, Lie brackets and the exponential are from 
the associative algebra aC@Diff@Diff, Diff being the associative algebra of dif- 
ferential operators on p with constant coefficients, and 

u@A@B~Wl3Diff@Diff~S@Diff@DiffcC?(~)@Diff@Diff 

acts onf@gby u@AC?M(f@g)=ti(f)B(g). 
The first terms in the formula are as follows: 

f*l?=fg+ i C [Xi, Xjl ai(f)aj(tZ> 

+ g C [Xi, Xjl Lk x,1 &&(.f)~j&k> 

+ g c [xk, [xjy xi] ] <ddj (.!-)a; (g) + di (f)dkdj (g) ) 

+o(e*) 

=fs+ t c c;x,, ai cmj (g) 

+ $ c c%c$xn( akaj(f)ai (g) + ai (f)akaj (g) ) 

where c$ are the structure constants of Y. 

The next part of this note will be devoted to problems concerning the existence 
and description of star-products. 

It seems that we cannot retain all generality to obtain reasonable results. There- 
fore we shall suppose that the Poisson structure P is of the form P=& UuDi A 
Oj, where a,+ and Die Der ( v) . It is not a very restrictive assumption, since every 
Pc&Der’ ( v) is of this form for most algebras V which can appear in applica- 
tions, e.g., for algebras of smooth functions on manifolds. Since we shall look for 
an explicit formula for star-products which would be good for every algebra V, 
we can make use only of the properties of derivations Di, i.e., only of formal prop- 
erties of derivations and the structure of the Lie algebra 9’ generated by {Di}. 
Therefore we must work on a “formal level”, i.e., we can only use the tensor 
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algebra of the universal enveloping algebra of Y. As a result we get, in some cases, 
a formula for star-products on the level of this tensor algebra which can be easily 
translated into the language of differential operators. 

The next section is therefore devoted to a description of the necessary proper- 
ties of the tensor algebra %!@ = @F!, a@“’ of a universal enveloping algebra over 
a Lie algebra. We introduce a graded Lie algebra structure on %@ compatible with 
the graded Lie algebra structure on DifF ( V) and the notion of a Poisson element. 
We show that Poisson elements are exact solutions of the classical Yang-Baxter 
equation. We introduce and compute analogs of Hochschild cohomology as well. 

5. The calculus on tensor algebras of universal enveloping algebras 

The set Der( v) of derivations of an associative commutative algebra has a 
natural structure of a Lie algebra. On the other hand, any Lie algebra 2’ (over a 
field of characteristic 0) has always a faithful representation in Der( V) for V 
being the dual +F of the universal enveloping algebra %= %(2’) (see, e.g., ref. 
[ 111). The associative structure on ??? is defined by 

cfg,u)=~@g,c(u)> forallf;geV,uc%, 

where c : C?+ %C3% is the coproduct in ‘42, and the representation 
R : Y+Der( %F) is given by 

(R(x) (et-), u> = cf; xu> . 

R can be clearly extended to an associative algebra representation 
R : %+Diff( V) and since it is obvious how to define the extension 
R:%P +DifF ( V), which is a mapping of graded vector spaces for @’ being 
the tensor algebra %@‘= CB:‘, %@“, we will show how to define a graded Lie al- 
gebra structure A on 4?@ for which R is a homomorphism of graded Lie algebras. 
Since it makes sense for an arbitrary bialgebra, we start in all generality. 

Let 4?! be a bialgebra in the sense of Bourbaki [ 5 ] over a field X of characteristic 
0, i.e, an associative algebra with unit II equipped with a coproduct c : ?Z!‘-t ‘42@& 
which is a homomorphism of associative algebras ( %@ 9 has the obvious asso- 
ciative algebra structure) and which is coassociative, i.e., 

(id@c)oc= (c@id)oc. 

A standard example is the universal enveloping algebra 42( 2’) of a Lie algebra Y 
for which the comultiplication has the form 

c(D)=D@Q+Q@D forDEYs%. 

All this has a slight generalization. Namely, we have 
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k+ I limes 

which is a homomorphism of associative algebras defined inductively by 

ck+‘= (id@id@~.~@id@c) ock, c’=c. 

The ordering of id and c in the definition of ck does not matter because of the 
coassociativity of c. 

For the universal enveloping bialgebra % (9) we have 

c”(D)=D~Q~...~Q+Q~~~Q~...~Q+...+Q~...~Q~~ 

for DEP. In other words, ck is the homomorphism induced by the diagonal ho- 
momorphism of Lie algebras Y+$?x-~ x9. Elements D in 42 for which 
c”(D)=D~Q~...~Q+Q~o~Q~...~Q+...+Q~...~Q~~arecalledprimitiveand 
it is well known that the set of primitive elements coincides with Y. 

For O<i<p and O<j<p+ 1, define I$, cf : 4’lp+‘-+ 4Yp+li+’ by 

If(Xo@...@Xp) =Xo@...@Xj-I @Q@*.*@Q@Xj@...@Xp 3 

It is obvious that cf and 1,” are homomorphisms of associative algebras and that 
c$c%p+b for all 0 < i< a because of the coassociativity of c. 

For AE W+‘, BE @“’ put now 

i(B $0 (- 1 )““c%(A) -Z$(Z$:f(B) ) , 

where “s” stands for multiplication in W+ “+ ‘, and 

AAB=i(B)A+ (- l)Ob+‘i(A)B. 

For antisymmetric tensors AC/I’+’ 42 and BEAM+’ 4V define the antisymmetric 
products by 

(a+b+ l)! 
AAB= (a+l)!(b+l)! a(AAB)’ 

where CY is the antisymmetrization projector. 

Theorem 5.1. Let 42 be a bialgebra. Then the pairs ( 3!@, A ) and (A*?2, & ) are 
graded Lie algebras with elements from a’+ ’ and A”+ ’ @ being of rank k. 

Proof Observe first that, for BE 4Vb+ I, i(B) : 4Y@ + %@’ is a graded derivation of 
the tensor algebra (We’, 0) of rank 6, i.e., i(B) : @a+W+b and for AE %“‘+I, 
CE W+ ’ we have 
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i(B)A@C=i(B)Ac3C+ (- l)(“+‘%@‘i(B)C. 

Since the graded derivations form a graded Lie algebra and since i(B) = 0 if and 
onlyifB=O [i(B)Q=B],itsuffcestoshowthatforA~~~+’,B~~’+’thegraded 
commutator 

i(B)oi(A)+(-l)““+‘i(A)~i(B) 

equals i(A Al?). Moreover, it suffices to check it only on generators of the tensor 
algebra, i.e. on a. 

Let XE %!. We have 

i(B).i(A)X=i(B) (c”(X)-A) 

= kgo (-1)“6c~(ca(X))&4)*I~(Ijj;~(B)). 

Sincecjl.(c”(X))=~“+~ (X) for all 0 <k< a, we have for XE 9 

~(B)~~(A)X=C”+~(X)-I’(B)A, 

i(B)oi(A)X+ (- l)““+‘i(A)0i(B)X 

=c”+“(X).(AAB)=I’(AAB)X. 0 

Since (Q@U) A (Q@Q) =O, similarly to section 2, we get a coboundary operator 
a 11011: 42 a+l,@a+2 setting &&= ( - 1 )“(Q@Q) A.A, or explicitly 

aosa (~~c9-43~~) 

=(--I)akgo (-~)“c~(;(A)-x~~~~~~x,~Q+(-~)~+~Q~x~~...~~, 

= (- 1)” i (- l)~X~~...~C~(X~)~...~X~, 
k=O 

where co(x) =c(x) - (Q@x+x@Q). This shows that the cohomology of &,n de- 
pends only on the coalgebra structure of the bialgebra ( 0Z, c). One can check that 
cn is a new coassociative coalgebra structure. 

Theorem 5.2 Let ( 4?, c) be a coassociative coalgebra. 
(i) If eE %! satisfies c(e) =e@e, then c, : %-+ %@% defined by c,=c 

- (e@id+id@e) is another coassociative coalgebra structure on 4!. 
(ii) The map a, : W+ %I*, where %* is the tensor algebra over ?@ and 8, is deJined 

by 
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is a coboundary operator, i.e., af =O. 

Proox By straightforward computation. 0 

Now we can introduce the cohomology of a given coassociative coalgebra ( ‘??, c) 
putting H( %‘, c) =ker a,/im a,. The following result describing the cohomology 
of a coalgebra &( 9) can be regarded as a generalization of the classical result of 
Vey [28] about the differentiable Hochschild cohomology of the algebras of 
smooth functions on manifolds. 

Theorem 5.3. Let ( %, c) be the universal enveloping bialgebra of a Lie algebra Y 
over a field of characteristic zero. Then the cohomology space HP( 4Y, cg) is iso- 
morphic to the space ApY of antisymmetric tensors over 2’. More precisely, ifAE 4Yp 
is a cocycle, then its antisymmetric part a(A) belongs to ApY and A- a(A) is a 
coboundary. 

Proof The coalgebra structure of (%, c) is known to be isomorphic to the coal- 
gebra structure (S(U), c) of the symmetric algebra S( 9) over the vector space 
Y (Bourbaki [ 5 ] ), which is a generalized version of the Poincare-Birkhoff-Witt 
theorem. In other words, we can consider the Lie algebra Y to be commutative. 
Since the isomorphism preserves unity, also the coalgebras ( %, cl) and (S(U), q) 
are isomorphic, so Hp( 42, cI) xHP(S(Y), cl). 

Looking carefully at the proof of the theorem describing the differentiable 
Hochschild cohomology of the algebra C”(N) in ref. [ 71, one can see that the 
authors make all the computations on the level of some algebra of polynomials 
which is nothing but the symmetric algebra over some finite-dimensional vector 
space. More precisely, the C”(N) module of multilinear differential operators 
on C”(N) is locally freely generated by the subalgebra S of polynomials with 
respect to a/ax,, . . . . a/ax,, and we have (locally) an isomorphism 
HP,in( C” (A’), 6) M HP (S, cg ), where 6 is the Hochschild coboundary operator for 
C”(N) and c is the natural coalgebra structure on S. The fact that we deal with 
polynomials in a finite set of variables plays no role in the proof, so we can just 
repeat the proof of Cahen, De Wilde and Gutt [7] to get Hp(S( U), cq) xApY. 

From now on % denotes the universal enveloping bialgebra of a Lie algebra Y 
of finite dimension over a field L of characteristic 0. Let vbe an associative com- 
mutative algebra over A and let J : Y+Der( V) be a Lie algebra homomorphism. 
J extends to a homomorphism J : %+Diff ( V) of associative algebras and further 
to a homomorphism J : %@+DiffY ( V) of the tensor algebra (a@‘, 69 ) into the 
associative algebra (Dip ( V), * ) (cf. section 3 ) by 
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J(X,~-..~X,)=J(X,).....J(X,) . 

We also have an induced homomorphism of graded commutative algebras 
J : A*@-+ .&Dip ( V) . Obviously, J(ll@Q) = m is the multiplication in V. 

Theorem 5.4. J : ‘JP+DifF ( V) is a homomorphism of graded Lie algebras 
(a@‘, A ) and (DiP( V), A ). The same is valid for (A*%, & ) and 
(&DifP( V), A). 

Proof: It suffices to show that J(i(B)A)=i(J(B))J(A), which can be reduced 
to the proof of the equality 

J(c’(A)-B)=i(J(B))J(A) 

for AE%! and BE%! b+ ‘. Since cb : %+ @‘+ ’ and J : %@+DifF( V) are homo- 
morphisms of associative algebras, it suffices to take A from 9. Then 

J(c*(A) .X,C+@X,) = J(AX,, 63X, @+.~@X, +...+X, @..@X,-, @AX&) 

=J(A)J(Xo)*J(X,) l . . ..J(Xb)+...+J(Xo) . . . ..J(Xb-.)*J(A)J(X6) . 

By definition 

(J(A)J(X,) +J(X,)*....J(Xb) +..a 

+ J(X,) -0.. -J(&-, 1.JU)J(&) ) (~0, .-., d 

=J(A)J(X,)(u,)...J(X,)(u,)+-.a 

+J(&) (uo)-.J(A)J(&) (ud 3 

and since J(A) is a derivation, the last line equals 

J(A) (J(X,) (w,)-.J(%) Cub) 

=i(J(X,)-... -J(S) )J(A) (~0, a.-, G) . n 

In view of section 4 it is now natural to introduce the following definition. 

Definition 5.5. We call an element P from A 2%!+, where %+ is the ideal in 92 gen- 
erated by Y, a Poisson element, if Pi!JP=O. 

Theorem 5.6. P is a Poisson element if and only if Pwi24p and P satisfies the clas- 
sical Yang-Baxter equation 
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where we write for convenience Pi instead of 4(P) and the brackets denote the 
usual commutators in the associative algebra 4P3. 

Proof: Instead of proving directly that PE/I %‘, we will make use of theorem 4.2. 
Consider the coregular representation R : Y+Der( d+F) and the induced homo- 
morphism R : (A*&‘, &)+,dDiff *(V), a). Since R(P)&R(P)=O and R(P) 
vanishes on constants, R(P) is a bilinear derivative by theorem 4.2 ( @ contains 
no nilpotent elements), i.e., 

R(P)(xy,z)=xR(P)(y,z)+yR(P)(x,z) . 

This in turn is equivalent to c,,(P) =P,,+P, (recall that p,=Q@P, P,=P@Q, and 
PI has II inside), which means that components of P consist of primitive ele- 
ments. Observe now that, since co(P) =Po+P, and c, (P) =P, +[Tpz, we have 

~A~=2(C,(~)~~-C,(~)Po)=2([Po,P~]+P,P~--P*Po), 

where the products and commutators are taken in the associative algebra %@3. 
After antisymmetrization we get 

O=~~~=([~o,~,]+[Po,Pr]+[P,,Pz]). 0 

6. Star-products for Poisson elements 

In this section we introduce and describe a star-product for a Poisson element 
which is a quantization of the classical Yang-Baxter equation. The form of this 
star-product follows from a result of Drinfel’d [ 121 and can be viewed as a gen- 
eralization of the Moyal product. This formal star-product derives a star-product 
for some, we would say computable, Poisson structures. It only depends on alge- 
braic properties of the Poisson structure. Since no geometry is involved, the 
method covers geometrically degenerate cases as well. 

Note, finally, that the Moyal product is usually described as an exponential of 
the corresponding Poisson structure. In fact, this has a precise and unambiguous 
meaning on the tensor product level only. 

Let us consider “formal deformations” of ll@Qe a”. Similarly to section 2, de- 
tine aformal deformation of Q@Q to be a formal series &=Q@Q+ IF=, E’A~, where 
Ake &’ and &A&=0. We define formal deformations of order k in an obvious 
way and we clearly have an analog of (2.6) with &of instead of a,,. 

Definition 6.1. Let P be a Poisson element of the tensor algebra of the universal 
enveloping algebra % over some Lie algebra 9. A formal deformation A, =Q@ 
Q + EP + IF=“=2 .$Ailk is called a star-product for (FD if, for every k> 1, 
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(i) Al; is antisymmetric if k is odd and symmetric if k is even, 
(ii) Ak is “vanishing on constants”, i.e., Ake %‘I’, . 

Note that, if A,=QG~Q+EIP+C~!~ .zkAk is a star-product, then P,=P+ 
C r=, ckAzk+, is a formal deformation of P, i.e., P, &P, =O. The following prop- 
osition describes the term of order 2 in star-products. 

Proposition 6.2. If P= xi’+o aeDj@Djwl’Y, aij= -aji, is a Poisson element, 
then P&P= CloeplAz, where 

A,=iP’+ k .C a,ak,(Di[D,, Dj]@Dk+Dk@Di[D,, Dj])+a,,,B, 
1.J.h.l 

The proof is just a matter of computations and we omit it. Note only that 
P’=P-P is the square of P in the algebra 9&% 9l. 

Let us now see which problem appears when we try to obtain the higher-order 
deformations inductively. Suppose that ~~C~Q+EP+E~A~ is a star-product of order 
2. Thus PAA? is a aqso cocycle. Define o : 913 + +Y3 by O(X@J@Z) =z@@x. It is 
easy to see that a( da*+4 ) = dood ifAE %’ is antisymmetric and o( i&,~ ) = - i&,4 
ifA is symmetric. One can check that a(PAA2) =PAA2, so that the antisymme- 
tric part of P’ A Az vanishes and P AA1 = &J,. Moreover, by the above property 
of a, A3 can be chosen antisymmetric. Since P and A, contain no elements of the 
form Q@X, PAAz contains no elements of the form Q@X@ Y or X@Q@ Y, and A3 
can be chosen “vanishing on constants” as well. Unfortunately, direct computa- 
tions of A3 are complicated and we omit them. 

To obtain the term of order 4, it is now necessary that 2PAA3+A2AA2 is a 
coboundary. Since it is a cocycle, it is a coboundary if and only if its antisymmet- 
ric part vanishes, i.e., if and only if P&A3=0 and we must work in “Chevalley 
cohomology”. This is the most important step in the symplectic case and it is 
overcome by means of hard computations using properties of symplectic 
connections. 

It is interesting that the whole procedure can be repeated in an exponential 
notation. Namely, we shall look for star-products of the form A, =exp(uP+ 
E’B-, +..e), where the exponential is taken with respect to the associative algebra 
structure of f@%. Since co, c,, IO, Z, : 9P+ %3 are homomorphisms of associative 
algebras, the condition &AA,=0 can be written in the form 

=exp(sc,(P)+sZc,(B-,)+~~~)~exp(dPo+e’lo(B2)+~0~). (6.1) 

We find the condition for Bz using the Campbell-Hausdorff formula and the fact 
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that exponents coincide up to order k if and only if the arguments coincide up to 
order k. Thus we get from (6.1) 

where [ ., * ] is the commutator in e3. Thus 

hZJd2 =f([c,(~>,~pgl-[CO(~),(IPZl) > 

and since, as one can easily check, co(p) =P,,+P,, c, (P) =P,+p2, and lpAp= 
([P,,P,l+[P,,P,]+[IFP,,Pz])=O,wegetfinally 

It is not hard to verify that B2 satisfies this equation if and only if it is of the form 
A2 - $P2 for A2 as in proposition 6.2. This is not surprising, since the term $P’ is 
included in the exponential notation. 

Further calculations become complicated and we note only that we have to 
look for B3e e2 satisfying 

2&d& = [p, +p2, Co(B2) I+ [C, (B2), b+p, I+ P,,&(B2) 1 
+ [Z,(B,), &II +i P2 +Rl, P2, &II 1 - 

There is a case where we can give a simple answer. In this case all terms of higher 
orders vanish. 

Theorem 6.3. Zf IFD= C;j aeD;@DjeA’Y is a Poisson element such that [ P2, pi] 
=0 (i.e., the Di commute pairwise), then P is a Poisson element and exp(@‘) = 
IZ rzO &%‘/k! is a star-product for P. 

Proof: By permutation of variables, [Pa, p,] = 0 implies [P,, Pz ] = 0 and 
[ IIP,, P, ] = 0 and hence the Yang-Baxter equation P AtP = 0, so P is a Poisson ele- 
ment. Put A,=exp(#‘). Then both sides of (6.1) are equal to exp[e(!Po+P, + 
E32)], so A,AA,=O. 0 

However, there is a general formula which can be derived from Drinfel’d [ 121, 
Let us sketch briefly the idea. 

A Poisson element P = Ci,j auDi@DjEA’Y can be regarded as a left-invariant 
Poisson structure on the corresponding Lie group G. After reduction to the sym- 
plectic leaf through the neutral element e which is a Lie subgroup, we can assume 
that det (cu,) # 0, i.e., that P corresponds to the left-invariant symplectic form 52 
on G. As a form on Ip regarded as the space of left-invariant vector fields, Q= 
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(b,) = (cu,) - ’ in the basis {Oi>. Since 52 is closed, it defines a cocycle, i.e., a cen- 
tral extension &= Y0W of the Lie algebra Y. The Lie bracket [ , ] - in d is 
defined for elements of 2~ L by [Oi, Oil *= [Oi, Oj] +b,X. The Lie-Poisson 
structure on the dual (b)* [with the symplectic leaves being affrne subspaces of 
(E)*] admits the star-product A;, described in theorem 4.6. This product is in- 
variant with respect to the coadjoint action of G. Take V)E (@*, q(X) = 1, 
o( 4”) =O. The coadjoint action of G in ($‘)* gives us a local diffeomorphism 
@ : G+ 0 (A) of G onto the orbit 0 (A) of X. This mapping is equivariant, so the 
pullback A, = @; r (A,) is a star-product for the symplectic structure on G given 
by left-invariant differential operators. The algebra of left-invariant differential 
operators is canonically isomorphic to the universal enveloping algebra ?& (9)) 
i.e., we get a star-product for 119. Thus we get the following theorem. 

Theorem 6.4 (Drinfel’d). Every Poisson element 

P= C a~D;@DjEA.‘Y 
i.j 

admits a star-product A, E a,“‘. 

In spite of the fact that the above procedure is constructive, the explicit form 
of A, is rather complicated. Every linear differential operator on G can be written 
in the form Z&Da withf,e?(G) and D”=D~l~eeO~D~~%(S!‘). Having the 
form of & as in theorem 4.6, we can write 

where &as are the coefficients in the Campbell-Baker-Hausdorff series, 

C~(CtkDk, CsiDj)= C tkDk+ CsjDj-~-f&C tksj[Dk,Djll+... , 

of the term rasp > and 

CXDa>W= ~SaWDcr@W-V. 

Since 

we can calculate @ ; ’ ( V) (e) using the formulae 

@c’( a,,,>= C hmianiDi, D/c(hmn) = C hmicbn 3 
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where h,,,, are the matrix elements of the adjoint action of G in the basis {Di} and 
& are the structure constants. Since clearly h,,,,, (e) = S,,,,,, we get (cf. proposition 
6.2 and ref. [ 12 ] ) 

A,=Q@Q+&P 

(6.2) 

Note that we can get a star-product for a Poisson element P= Ci,j cUijDi@ 
Die/i ‘9’ for Y being a Lie algebra over an arbitrary field of characteristic zero in 
a similar way. 

The above theorem enables us to construct star-products for Poisson structures 
defined by Poisson elements. Let ( V, P) be a Poisson algebra with a Poisson 
structure P of the form P= 2 ~j= i uijDi. Dj, where D;eDer( v) and u~EX, uO= -Uji, 
j, i= 1, . ..) n. Let B be the Lie subalgebra in Der( V) generated by {Di} and let % 
be the universal enveloping algebra over 9’. The inclusion J : Y-+Der( V) ex- 
tends to a homomorphism J : %-+Diff ( V) of associative algebras and further to 
a homomorphism J : (%@, A )- (DifF( V), A ) of the graded Lie algebras as in 
theorem 5.4. 

If P= C:lj,, aoDi @Dj is a Poisson element in %@‘, then it has a star-product A, 
and hence A,= J( A,) is a star-product for P. 

Corollary 6.5. Let P=C:fi=I aoD;*Dj, where DieDer( I’) and aooL, uU= -Uji, i, 
j=i, . . . . n, be a Poisson structure on an associative commutative algebra (V, m) 
over u field L of characteristic 0. If $= 1 :lj= 1 a, Di @ DjE %@k % is u Poisson ele- 
ment, then P has u star-product of the form J( AC), where A, is the star-product of 
Pus in (6.2). 

Remark 6.6. We usually have some freedom in writing a given Poisson structure 
in the form P= 2i.j ugDi l Dj, with aijck and DiEDer ( V). Even if Der ( V) is locally 
freely generated as a V module, we have for a given set of generators a unique 
such form, but with a, from V. Since we must consider tensor products over R 
and not over V in order to have an associative algebra structure, we can, for in- 
stance, decide whether to write the element u (D, @Dz) with UE V, as (uD, ) @Dz 
or D,@ (uD,), etc. 

This makes our approach far from unique, but it seems that it lies in the nature 
of the problem. On the other hand, there is always the hope that we can choose P 
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for P in such a way that P is a Poisson element and get the star-product in the 
form J(A,). 

If we are unable to write a corresponding Poisson element we always have a 
star-product of order 2 and hence, by the cohomology properties, of order 3. The 
question of the existence of a full star-product for a given Poisson structure is 
open. 

Theorem 6.7. Let P= Xi:,= 1 a,Di.Dj, D+Der( V) and a,EL, aij= -aji, i, j= 1, . . . . 
n, be a Poisson structure on associative commutative algebra ( V, m). Then P has 
a star-product m + EP+ .z2A, + EVA, of order 3. The term Az can be written as 

+ i j~e,a,adDi[Dt~ Djl (u)D~;(v)+Dk(u)Di[DI, Djl (VI) . 0, 

ProoJ This is just a matter of direct computations. 0 

We shall end with some examples of Poisson structures and corresponding star- 
products. 

Example 6.8. We always have a star-product for a symplectic structure locally, 
since the corresponding Poisson structure can be written in suitable coordinates 
(x I, ‘“> x~~) in the form P=2cy=, ai A&+,,, where ai stands for a/ax,, and deri- 
vations {&} commute. The form of P is invariant with respect to a suitable change 
of coordinates, but the derivations ai do not change linearly (over t!?), i.e., IFP = 
I;= i ( ai @ai+,, -a,+, @iLli ) is not preserved as an element of the tensor product 
over I? and exp ( CID) does not define a star-product globally. In special cases only, 
e.g. when we have a torsion-free symplectic connection without curvature, does a 
suitable change of coordinates preserve P and do we get the Moyal star-product. 

Example 6.9, Consider the Poisson structure on IR4 defined on coordinate func- 
tions a, b, x, JxC”(F?~) by P(y, a)=yb, P(b, y)=ya, P(b,x)=xa, P(x, a) =xb, 
P(x,y)=P(a, b)=O. PuttingA=xa,+ya,,, B=ba,-aa,, one can write P in the 
form P=2A A B. This is a quadratic Poisson structure. Since A and B commute, 
we have a star-product Cr=e &“P”/k!, where 

P”(u,v)= ,% (-1)’ ; 
0 

A”-iB’(u)A’B”-‘(V), 
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Example 6.10. Consider an interesting Poisson structure P on the unit sphere 
S2 c lR3 defined in global coordinates (x, y, z) in [R3 by 

P(x, y) = ( 1 -z)Zz, P(z,x)=(l-zpy, P(y,z)=(l-zpx, 

so that the corresponding two-tensor field P can be written in the form 

P=2(1-z)2(zYAx+xYAz+yxAz)) 

where X=za,,- y&, Y=za,-xi3,, Z=x$-- ya, are vector fields on S2. P is degen- 
erate at (0, 0, 1) and the rest of S2 forms one two-dimensional symplectic leaf of 
the corresponding Kirillov foliation. The vector fields X, Y, Z form the Lie alge- 
bra sl(2, W), but at some effort one can write P using commuting vector fields 
only. Namely, P=J(P), where P=A@B-B&4 and 

A=-xya,+(i-z-y2)a,+(i-Z)ya=, 
B=(l--z--x2)a,-xya,,+(i-z)xai, 

are tangent to S2 and commuting vector fields. Thus we get a star-product for P 
in the form formally as in example 6.9. Of course the coordinate form of this star- 
product is rather complicated. 

Example 6.11. Let the group G=E, act on [R2 by the reflection (x, y) + ( -x, y). 
The orbit space N=lR*/G is a closed half-plane with the differentiable structure 
induced from lR2, i.e., 

V=C”(N)=GfX”(R2) : j-(x, y) =f( -x, y)} . 

The vector fields A = a,, and B= ( 1 /x)3, define commuting derivations of V (the 
limit lim,,O B(f) (x, y) exists for every f~ V) and hence P=A A B is a Poisson 
structure on N. A star-product for P is formally as in example 6.9. 

We are most grateful for the extraordinary hospitality and mathematical at- 
mosphere provided by Professor R. Nagel and his colleagues at the University of 
Tiibingen. We would also like to thank Professor C. Roger, who turned our atten- 
tion to ref. [ 121. 
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